

Short Research Article

New chiral synthons of $^{13}\text{C-}$ or $^{15}\text{N-labelled}$ $\alpha\text{-amino}$ acids^†

ALEXANDER POPKOV^{1,*}, MILAN NÁDVORNÍK², VRATISLAV LANGER³, ROBERT JIRÁSKO⁴, MICHAL HOLČAPEK⁴, TOMÁŠ WEIDLICH⁵ and ANTONÍN LYČKA⁶

¹ Faculty of Health and Social Studies, University of South Bohemia, Boreckeho 27 370 11 České Budějovice, Czech Republic

²Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic ³Environmental Inorganic Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96

Götebora, Sweden

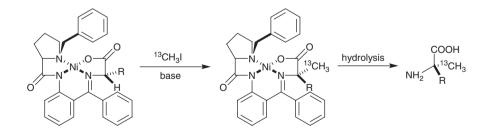
⁴Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic

⁵ Institute of Environment Protection, University of Pardubice, Doubravice 41, 533 41 Pardubice, Czech Republic

⁶Research Institute for Organic Syntheses, Rybitví 296, 532 18 Pardubice 20, Czech Republic

Received 16 August 2006; Revised 6 January 2007; Accepted 20 January 2007

Keywords: amino acids; asymmetric synthesis; carbon-13; nitrogen-15; labelling


Introduction

Ni(II) complexes of Schiff bases of (*S*)-*N*-benzylproline (2-benzoylphenyl)-amide (BPB) and α -amino acids were developed as artificial analogues of pyridoxal 5'-phosphate (PLP)-dependent enzymes.¹ Their applications in the asymmetric synthesis of α -amino acids are being perfected by a number of groups worldwide.² Chiral synthons of α -amino acids labelled with ¹³C or ¹⁵N are useful tools in preparation of α -amino acids that are enantiomerically pure and selectively isotopically substituted for NMR and MS studies of biological systems. Based on previously described preparation of labelled nucleophilic and electrophilic glycine synthons,^{3,4} different approaches to labelled α -methyl α -amino acids were evaluated. In the case of α -(¹³C)methyl α -amino acids, two

alternatives exist: (1) preparation of an alanine synthon by introduction of the α -(¹³C)methyl group into a glycine synthon followed by an attachment of a side chain; and (2) use of α -amino acids synthons carrying a side chain and introduction of the α -(¹³C)methyl group.

Results and discussion

The second approach was found to be more efficient for the preparative applications. (13 C)Methylation of sterically hindered tertiary carbon required application of up to 5-fold excess of 13 CH₃I in 1,3-dimethyl-2-imidazolidinone. KOH was used as a base. Diastereomeric excess was low: 6–20% depending on the precursor. Chemical yields of alkylations are in the range of 60–80%. Stereochemistry of the amino acid

^{*}Correspondence to: Alexander Popkov, University of South Bohemia, Faculty of Health and Social Studies, Branišovská 31, České Budějovice 370 05, Czech Republic. E-mail: sasha@jcu.cz

Copyright © 2007 John Wiley & Sons, Ltd.

[†]Proceedings of the Ninth International Symposium on the Synthesis and Applications of Isotopically Labelled Compounds, Edinburgh, 16–20 July 2006.

chiral centre of the product was D due to preferable attack of si-side of the intermediate carbanion. For the preparation of L- α -methyl amino acids it is necessary to build the synthon with reversed configuration (i.e. derived from D-proline instead of L-proline). a-Amino acids synthons are prepared from BPB, amino acid and nickel salt if no labelling of α -amino group, α -carbon or carboxyl carbon is required. For the synthesis of a structure carrying a label in any of the above-mentioned positions, the corresponding labelled glycine synthon could be prepared from commercially available mono-, di- or tri-labelled glycine.³ This synthon is further monoalkylated with a suitable electrophile in order to introduce a (protected) side chain, followed by methylation by labelled or non-labelled methyl iodide. An optimization was done in order to increase yields of the complexes and decrease consumption of expensive labelled glycine.⁵ Similar optimization of synthesis of a precursor for α -(¹³C)methyltyrosine gave the ratio of BPB:amino acid:nickel nitrate = 1:1.4:1.5. This ratio allows to achieve 87% yield of the complex. The development of more diastereoselective synthons is underway.

Acknowledgements

M. H. and R. J. acknowledge the support of grant project No. MSM0021627502 sponsored by the

Ministry of Education, Youth and Sports of the Czech Republic.

REFERENCES

- Dunathan HC. Adv Enyzmol Relat Areas Mol Biol 1971; 35: 79–139.
- 2. (a) Belokon YN. Pure Appl Chem 1992; 64: 1917-1924; (b) De BB, Thomas NR. Tetrahedron: Asymmetry 1997; 8: 2687-2691; (c) Belokon YN, Tararov VI. Maleev VI. Saveleva TF. Rvzhov MG. Tetrahedron: Asymmetry 1998; 9: 4249-4252; (d) Cai C, Soloshonok VA, Hruby VJ. J Org Chem 2001; 66: 1339-1350; (e) Belokon YN, Kochetkov KA, Ikonnikov NS, Strelkova TV, Harutyunyan SR, Saghiyan AS. Tetrahedron: Asymmetry 2001; 12: 481-485; (f) Debache A, Collet S, Bauchat P, Danion D, Euzenat L, Hercouet A, Carboni B. Tetrahedron: Asymmetry 2001; 12: 761-764; (g) Gu XY, Ndungu JA, Qiu W, Ying JF, Carducci MD, Wooden H, Hruby VJ. Tetrahedron 2004; 60: 8233-8243; (h) Soloshonok VA, Cai C, Yamada T, Ueki H, Ohfune Y, Hruby VJ. J Am Chem Soc 2005; 127: 15296-15303.
- Jirman J, Nádvorník M, Sopková J, Popkov A. Magn Reson Chem 1998; 36: 351–355.
- Popkov A, Jirman J, Nádvorník M, Manorik PA. Collect Czech Chem Commun 1998; 63: 990–994.
- 5. Nádvorník M, Popkov A. *Green Chem* 2002; **4**: 71–72.